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Semidefinite programming relaxations for semialgebraic
problems

Abstract. A hierarchy of convex relaxations for semialgebraic prafdeis introduced. For questions re-
ducible to a finite number of polynomial equalities and iredies, it is shown how to construct a complete
family of polynomially sized semidefinite programming cdiwhs that prove infeasibility. The main tools
employed are a semidefinite programming formulation of i sf squares decomposition for multivariate

polynomials, and some results from real algebraic geoméhg techniques provide a constructive approach

for finding bounded degree solutions to the Positivstelien)sand are illustrated with examples from diverse
application fields.
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1. Introduction

Numerous questions in applied mathematics can be formaflyessed using a finite
number of polynomial equalities and inequalities. Welblum examples are optimiza-
tion problems with polynomial objective and constraints;lsas quadratic, linear, and
boolean programming. This is a fairly broad class, inclgdinoblems with a combina-
tion of continuous and discrete variables, and easily sed® tNP-hard in the general
case.

In this paper we introduce a new approach to the formulatf@omputable relax-
ations for this kind of problems. The crucial enabling fadtie computational tractabil-
ity of the sum of squares decomposition for multivariateypoimials, coupled with
powerful results from semialgebraic geometry. As a resulshole new class of con-
vex approximations for semialgebraic problems is obtaifiéw results generalize in a
very natural way existing successful approaches, inclyttie well-known semidefinite
relaxations for combinatorial optimization problems.

The paper includes notions from traditionally separatesgaech areas, namely nu-
merical optimization and real algebra. In the interest dfieeing the broadest possible
communication of the main ideas, we have tried to make thislaras self-contained
as possible, providing a brief introduction to both semiui&fi programming and real
algebra. It is our belief that there is a lot of potential ie fihteraction between these
fields, particularly with regard to practical applicatiohost of the material in the pa-
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2 Pablo A. Parrilo

per is from the author’s dissertation [ParOOb], with theiidd of new examples and
references.

The paper is organized as follows: in Section 2 the probleglabal nonnegativ-
ity of polynomial functions is introduced, and existing apgches are discussed. The
sum of squares decomposition is presented as a sufficieditmmfor nonnegativity.
In Section 3 a brief review of semidefinite programming issgr@ed, and it is shown
how to compute sum of squares decompositions by solving &sdimite program. In
the following section, some basic elements of semialgelmaometry are described,
and the Positivstellensatz is stated. Our main result (fdmdb.1) follows, showing
how the sum of squares decision procedure allows for thecezrbounded degree
solutions to the Positivstellensatz equation. We presexttanrefutation-based interpre-
tation of the methodology, as well as a comparison with earélated work. Section 6
contains some observations on the computational aspetiie @hplementation of the
techniques. In Section 7, a sample of applications fronedifiit applied mathematics
areas are presented. These include, among others, enlsmoibfinite relaxations for
guadratic programming problems, and stronger conditionsifatrix copositivity.

1.1. Notation

The notation is mostly standard. The inner product betwagnviectors inR” is de-
fined as(z,y) := >, z;y;. LetS™ C R™™™ be the space of symmetric x n real
matrices, with inner product betweéf Y € S™ being(X,Y’) := traceXY. A matrix
M € S™ is positive semidefinitPSD) if z” Mz > 0, Yo € R™. Equivalently,M is
positive semidefinite if all its eigenvalues are nonnegatietS’ be the self-dual cone
of positive semidefinite matrices, with the notatidn> B indicating thatd — B is
positive semidefinite.

2. Global nonnegativity

A fundamental question appearing in many areas of appliethenaatics is that of
checking global nonnegativity of a function of several ahtes. Concretely, given a
function F', we have the following:

Problem 2.1.Provide checkable conditions or a procedure for verifyimg validity of
the proposition
F(z1,...,2,) >0, Voi,...,z, € R. (2.1)

This is a fundamental mathematical problem, that appearanmerous application do-
mains, and towards which considerable research efforts haen devoted. In order to
study the problem from a computational viewpoint, and awsidecidability results, it
is clear that further restrictions on the class of functidghshould be imposed. How-
ever, at the same time we would like to keep the problem géaamugh, to enable the
practical applicability of the results. A good compromis@chieved by considering the
case ofmultivariate polynomials
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Semidefinite programming relaxations for semialgebraabf@ms 3

Definition 2.2. A polynomialf in x4, .. ., x,, is a finite linear combination of monomi-
als:

f= Z car® = Z Coyt a0, ca €R, (2.2)

where the sum is over a finite numberefuplesa = (a1, ..., ), a; € Ng. The set
of all polynomials inz1, . . ., z,, with real coefficients is written a&[z1, . .., z,].

Thetotal degreeof the monomiak® is equal toa; + - - - + «,. The total degree of a
polynomial is equal to the highest degree of its componemtanaals.

An important special case is thatlsbmogeneous polynomidlsr forms, where all
the monomials have the same total degree.

Definition 2.3. A form is a polynomial where all the monomials have the same total
degreed. In this case, the polynomial isomogeneousf degreed, since it satisfies

FOz1, . z,) = A f (21,0 2n).

It is well-known that there is a correspondence between$and polynomials. A form
in n variables and degree can be dehomogenizedto a polynomiabin 1 variables, of

degree less than or equabtq by fixing any variable to the constant valueConversely,

given a polynomial, it can be converted into a form by mujtipy each monomial by
powers of a new variable, in such a way that the total degredl ofionomials are the
same.

The set of forms im variables and degree can be associated with a vector space
of dimension(”*ﬂfl). Similarly, the set of polynomials of total degree less tloan
equal tom is a vector space of dimensic(ﬁjnm). These quantities will be important
later in the study of the efficiency of the computational ieypkntation of the proposed
methodology.

2.1. Exact and approximate approaches

It is a fact that many problems in applied mathematics carobmdlated using only
polynomial equalities and inequalities, which are satikffeand only if the problem
has a solution. In this regard, Tarski’s results on the erist of a decision procedure
for elementary algebra over the reals, settles the dedityabf Problem 2.1 for this
quite large class of problems.

WhenF' is a polynomial, the Tarski-Seidenberg decision procefB@R98, Mis93,
Bos82] provides an explicit algorithm for deciding if (219lds, so the problem is de-
cidable. There are also a few alternative approaches totefty answer this question,
also based in decision algebra; see [Bos82] for a surveyasisidal available tech-
nigues, and [BPR96] for more efficient recent developments.

Regarding complexity, the general problem of testing glofmnegativity of a
polynomial function is NP-hard (when the degree is at least)f as easily follows
from reduction from the matrix copositivity problem; see K&7] and Section 7.5.
Therefore, unless P=NRBny methodguaranteed to obtain the right answerevery
possible instanceill have unacceptable behavior for problems with a largebar of
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variables. This is the main drawback of theoretically pdwemethodologies such as
guantifier elimination.

If we want to avoid the inherent complexity roadblocks assed with theexact
solution, an attractive option is to settle for approximatswers, that are “reasonably
close” to the original question. The issue therefore arises there conditions, that
can be efficiently tested, that guarantee global nonnétatif’a function? As we will
see in Section 3.2, one such condition is given by the existefia sum of squares
decomposition.

3. Sums of squares and SDP

Before presenting the details of our approach, we take d detur in the following
subsection to present the basic ideas behind the convexiaption techniques used,
namely semidefinite programming.

3.1. Semidefinite programming background

In this section we present a brief introduction to semid&fiprogramming (SDP). We

refer the reader to [VB96] for an excellent survey of the tiyemnd applications, and

[WSV00] for a comprehensive treatment of the many aspedtsssdubject. SDP can be

understood as a generalization of linear programming, @/liee nonnegative orthant

constraint in the latter is replaced instead by the cone sitipe semidefinite matrices.
A semidefinite program is defined as the optimization problem

minimize  (C, X)
subjectto(4;, X) = b; (3.1)
X >0,

whereX € S§" is the decision variablé, € R™ andC, A; € 8™ are given symmetric
matrices. A geometric interpretation is the optimizatidnaolinear functional, over
the intersection of an affine subspace and the self-dual obpesitive semidefinite
matrices.

The crucial feature of semidefinite programs isdtswvexity since the feasible set
defined by the constraints above is convex. For this reasomdefinite programs have
a nice duality structure, with the associated dual programd

maximize (b, y)

subjecttoy " | y;A; < C, (82)

wherey € R™. Any feasible solution of the dual provides a lower boundtenachiev-
able values of the primal; conversely, feasible primal 8ohs give upper bounds on
dual solutions. This is known ageak dualityand follows since:

m m

(C,X)=(b,y) = (C, X)=Y_yibi = (C, X) =Y _y:(Ai, X) = (C=)_ 5iAi, X) > 0,

=1 i=1 =1
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Semidefinite programming relaxations for semialgebraabf@ms 5

with the last inequality being true because of self-dualitthe PSD cone. Under stan-
dard constraint qualifications (for instance, existencstioétly feasible points)strong
duality holds, and the primal and the dual problems achieve exdwlgame value.

Theorem 3.1.Consider the primal-dual SDP pair (3.1)-(3.2). If eitheaggble set has
has a nonempty interior, then for evety> 0, there exist feasibleX,y such that
(C, X) — (b,y) < e. Furthermore, if both feasible sets have nonempty intsritiren
the optimal solutions are achieved by sofg ..

From a computational viewpoint, semidefinite programs aaefficiently solved, both

in theory and in practice. In the last few years, research DR 8as experienced an
explosive growth, particularly in the areas of algorithnmgl @applications. Two of the

main reasons for this practical impact are the versatilityhe problem formulation,

and the availability of high-quality software, such as SED[5tu99].

3.2. The sum of squares decomposition

If a polynomial F' satisfies (2.1), then an obvious necessary condition istthdegree
be an even number. A deceptively simple sufficient conditiora real-valued polyno-
mial F'(x) to be nonnegative is the existence of a sum of squares deaitiopo

F(z) = Z fi@),  fi(x) € Rz, (3.3)

Itis clear that if a given polynomidl'(x) can be written as above, for some polynomials
fi, thenF is nonnegative for all values of.
Two questions immediately arise:

— When is such decomposition possible?
— How do we compute it?

For the case of polynomials, the first question is a well-gred problem, first stud-
ied by David Hilbert more than a century ago. In fact, one @&fitems in his famous
list of twenty-three unsolved problems presented at theriattional Congress of Math-
ematicians at Paris in 1900, deals with the representafiendefinite form as a sum
of squares of rational functions. The reference [Rez00taas a beautiful survey by
Reznick of the fascinating history of this problem, and peis to most of the available
results.

For notational simplicity, we use the notati®@DSfor “sum of squares.” Hilbert
himself noted that not every nonnegative polynomial is S®Simple explicit coun-
terexample is the Motzkin form (here, for= 3)

M(x,y,2) = 2ty? + 2%y 4 26 — 3229222 (3.4)

Positive semidefiniteness can be easily shown using theraettc-geometric inequality
(see also Example 7.3), and the nonexistence of a SOS desimpdollows from
standard algebraic manipulations (see [Rez00] for détailsthe procedure outlined
below.
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6 Pablo A. Parrilo

Following the notation in references [CLR95, Rez00], RKt,,, be the set of non-
negative forms of degree: in n variables, and), ,, the set of formgp such that
p = >, hi, wherehy, are forms of degreen/2. Hilbert gave a complete character-
ization of when these two classes are equivalent.

Theorem 3.2 (Hilbert). Let P, ,,,, 2\, be as above. Theh,, ,,, C P, ,,,, with equal-
ity holding only in the following cases:

— Bivariate forms:n = 2.
— Quadratic forms:m = 2.
— Ternary quarticsn = 3, m = 4.

By dehomogenization, we can interpret these results ingerihpolynomials (not nec-
essarily homogeneous). The first case corresponds to theagance of the nonnega-
tivity and SOS conditions for polynomials in one variabl&idis easy to show using
a factorization of the polynomial in linear and quadratictéas. The second one is the
familiar case of quadratic polynomials, where the sum ofasgs decomposition fol-
lows from an eigenvalue/eigenvector factorization. Th@swhat surprising third case
corresponds to quartic polynomials in two variables.

The effective computation of the sum of squares decompoditas been analyzed
from different viewpoints by several authors. In the authopinion, there are two main
sources, developed independently in unrelated fields. ©tie hand, from a convex
optimization perspective, the sum of squares decompastieclearly the underlying
machinery in Shor’s global bound for polynomial functiose¢ Example 7.1), as is ex-
plicitly mentioned in [Sho87,Sho98]. On the other handpfran algebraic perspective,
it has been presented as the “Gram matrix” method and arthensively by Choi,
Lam and Reznick [CLR95], though undoubtedly there are sadat in the authors’
earlier papers.

Animplementation of the Gram matrix method is presentedinés and Wormann
[PW98], though no reference to convexity is made: the resplSDPs are solved via
inefficient, though exact, decision methods. In the continelory literature, related
schemes appear in [BL68], and [HH96] (note also the impotarrection in [Fu98])).
Specific connections with SDP, resembling the ones devdlbpee, have also been
explored independently by Ferrier [Fer98], Nesterov [NBsnd Lasserre [Las01].

The basic idea of the method is the following: express themjolynomialF'(x)
of degree2d as a quadratic form in all the monomials of degree less thagoal tod
given by the different products of thevariables. Concretely:

F(x):zTQz, z= [l,arl,xg,...xn,xlxg,...,x’i], (3.5)

with @ being a constant matrix. The length of the vectois equal to(”gd). If in
the representation above the matéixis positive semidefinite, thef'(x) is clearly
nonnegative. However, since the variables iare not algebraically independenthe

matrix @ in (3.5)is not uniqueand@ may be PSD for some representations but not for

others. By simply expanding the right-hand side of (3.5)] aratching coefficients of
x, it is easily shown that the set of matriac@shat satisfy (3.5) is aaffine subspace
If the intersection of this subspace with the positive sesfiidte matrix cone is

nonempty, then the original functidr is guaranteed to be SOS (and therefore nonneg-

ative). This follows from an eigenvalue factorization@f= 77 DT, d; > 0, which
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Semidefinite programming relaxations for semialgebraabf@ms 7

produces the sum of squares decompositi¢n) = >, d;(Tz)7. Notice that the num-
ber of squares in the representation can always be takenequed to the rank of the
matrix Q. For the other direction, i’ can indeed be written as the sum of squares of
polynomials, then expanding in monomials will provide tepnesentation (3.5). By the
above arguments, the following is true:

Theorem 3.3.The existence of a sum of squares decomposition of a polghomi
variables of degre@d can be decided by solving a semidefinite programming fdagibi
problem. If the polynomial is dense (no sparsity), the disi@ms of the matrix inequality
are equal to(" 7 %) x ("+9).

In this specific formulation, the theorem appears in [PayP@d0a]. As we have dis-
cussed more extensively in those works and the previouggrhs, the crucial opti-
mization oriented convexity ideas can be traced back to,Sttow explored them at a
time before the convenient language of the SDP frameworlblead fully established.
Notice that the size of the resulting SDP problem is polyranim bothn or d if
the other one is fixed. However, it is not jointly polynomifbbth the degree and the
number of variables grOV\(ﬁ:‘) grows exponentially witln. (but in this case, the size of
the problem description also blows up).

Remark 3.4If the input polynomialF'(z) is homogeneousf degree2d, then it is suf-
ficient to restrict the components oto the monomials of degree exactly equadito

Example 3.5Consider the quartic form in two variables described beland define

— 2 2 . .
21 = X7,22 1= YT,23 =Y.

F(z,y) = 22" + 223y — 2%y* + 5y*

21T 2
T q11 912 913 x

= .1/2 q12 422 423 .1/2
ry 413 g23 433 ry

= qua’ + gy’ + (@33 + 2012)2%Y> + 2q132°y + 232y
Therefore, in order to have an identity, the following linegualities should hold:
Q1 =2, q2=5, ¢3+2q2=-1, 2q3=2, 2¢3=0. (3.6)

A positive semidefinite) that satisfies the linear equalities can then be found using
semidefinite programming. A particular solution is given by

2-31

1 [2-31
=|-3 50| =L"L, L=— ,
@ L o \/5{0 13}

and therefore we have the sum of squares decomposition:

1 1
F(z,y) = 5(2x2 — 3y2 + a:y)2 + 5(1/2 + 3xy)2.
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Example 3.6The following example is from [Bos82, Example 2.4], wheiis itequired
to find whether or not the quartic polynomial,

P(x1,29,23) = :v‘ll — (2zox3 + 1)96% + (x%:v% + 2xow3 + 2),

is positive definite. In [Bos82], this property is estabéidhusing decision algebra.
By constructing the&) matrix as described above, and solving the corresponding
SDPs, we obtain the sums of squares decomposition:

P(x1,22,73) = 1 + 23 4+ (1 — 2] + z223)?,

that immediately establishes global positivity. Noticattthe decomposition actually
proves a stronger fact, namely th@tz,, x2, x3) > 1 for all values ofz;. This lower
bound is optimal, since for instané&0, 1, —1) = 1.

There are two crucial properties that distinguish the susgofares viewpoint from
other approaches to the polynomial nonnegativity problem:

— The relativeractability, since the question now reduces to efficiently solvable SDPs
— The fact that the approach can be easily extended to thegmobtfindinga sum
of squares polynomial, in a given convex set.

To see this last point, consider the polynomial fampify, ), wherep(z, A) is affine
in A, with the parametek belonging to a convex s€t C R™ defined by semidefinite
constraints. Then, the search ovee C for ap(z, A) that is a sum of squares can be
posed as a semidefinite program. The argument is exactlyfaeberiting P(z, \) =
2T'Qz and expanding, we obtain linear equations among the emfi@sand\. Since
both@ are\ are defined by semidefinite constraints, the result follows.

This last feature will be the critical one in the applicatafithe techniques to practi-
cal problems, and in extending the results to the generabdgefraic case in Section 4.

3.3. The dual problem

It is enlightening to analyze the dual problem, that givesdittons on when a poly-
nomial F'(z) is not a sum of squares. Obviously, one such case is wher) takes
a negative value for some = xz,. However, because of the distinction between the
nonnegativity and SOS conditions, other cases are possible

By definition, the dual of the sum of squares cone are the difigzctionals that
take nonnegative values on it. Obviously, these shouldri&paly the coefficients of
the polynomial, and not on the specific matéin the representatioR’ (z) = 27 Q=.
Two possible interpretations of the dual functionals ardifierential forms [PS01], or
as truncated moment sequences [Las01]. As mentioned imshpdragraph, not all the
elements in the dual cone will arise from pointwise funcwaluation off".

Given F'(z), consider any representation:

F(z) = 27Qz = tracezz"Q,

wherez is the vector of monomials in (3.3), ariglis not necessarily positive semidef-
inite. The matrixzz” has rank one, and due to the algebraic dependencies among the
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Semidefinite programming relaxations for semialgebraabf@ms 9

components of, many of its entries are repeated. Replace now the matrix by
another onéV, of the same dimensions, that is positive semidefinite atisfies the
same dependencies among its entriesdsdoes. Then, by construction, the pairing
(W, Q) = traceW @ will not depend on the specific choice®f as long as it represents
the same polynomidf'.

Example 3.7Consider again Example 3.5, wherg = 22, zp = y2, 23 = zy. In this
case, the dual variable is:

2
w11 W12 W13 21 R1%2 2173
_ T _ 2
W = W12 W22 W23 ) zZZT = Z1R2 =5 R2Z23 | , (37)
2
w13 W23 W33 2123 2223 23

and the constraint that; 2o = 22 translates into the conditiom;; = ws3. We can
easily verify that, after substitution with the coefficismif £, the inner product

W11 W33 W13 q11 912 913
(W, Q) = trace | wzz waz w23 q12 Q22 G23
w13 W23 W33 q13 q23 433

= w11q11 + w33(g33 + 2q12) + 2qu3w13 + Waagas + 2wa3q23
= 2w11 — w33 + 2w13 + dwag,

does not depend on the elementglbut only on the coefficients themselves.

Now, givenany@ representing”(z), it is clear that a sufficient condition fdr not
to be a sum of squares is the existence of a méifias above satisfying

traceW @ < 0, W = 0.

The reason is the following: if (z) was indeed a sum of squares, then there would exist
aQsos = 0 representingt’. By construction, the expression above is independent
of the choice of@ (as long as it represents the same polynomial), and therddpr
replacing@ by the hypothetical) sos we immediately reach a contradiction, since in
that case the trace term would be nonnegative, aslhond@ sos are PSD.

The dual problem gives direct insight into the process otkhwey, after solving the
SDPs, whether the relaxation wesact since if there exists an* such thatf'(z*) =
> f2(z*) = 0, then it should necessarily be a common root of all thélhe simplest
instance occurs when the obtained dual malttixhasrank one and the components
of the corresponding factorization verify tikenstraintssatisfied by the; variables, in
which case the point* can be directly recovered from the entrieslt

4. Real algebra

At its most basic level, algebraic geometry deals with thuelgtof the solution set of a
system of polynomial equations. From a more abstract viéwpibfocuses on the close
relationship between geometric objects and the assocétbraic structures. It is a
subject with a long and illustrious history, and many linksseemingly unconnected
areas of mathematics, such as number theory.
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Increasingly important in the last decades, particulandyrf a computational view-
point, is the fact that new algorithms and methodologiesiffstance, Grobner basis)
have enabled the study of very complicated problems, nohatyle to paper and pencil
calculations.

In this section, a few basic elements from algebraic gegnae presented. For
comparison purposes and clarity of presentation, we ptdseh the complex and real
cases, though we will be primarily concerned with the latfer excellent introduc-
tory reference for the former is [CLO97], with [BCR98] beiag advanced research
treatment of the real case.

The usual name for the specific class of theorems we uSeeitenétze from the
German words Stellen (places) and Satz (theorem). The (icdt sesult was proved
by Hilbert, and deals with the case of an algebraically doféeld such asC. Since
in many problems we are interested in the real roots, we neé@uroduce the Artin-
Schreier theory of formally real fields, developed along search for a solution of
Hilbert's 17th problem.

4.1. The complex case: Hilbert's Nullstellensatz

Let the ring of polynomials with complex coefficientssdrvariables beC[z1, . . ., z,].
Recall the definition of a polynomial ideal [CLO97]:

Definition 4.1. The setl C Clz1,...,z,] is anidealif it satisfies:

1.0el.
2. Ifa,be I, thena+be 1.
3.lfa e I'andb € Clxy,...,x,],thena - b € I.

Definition 4.2. Given a finite set of polynomialg;);—1 ... s, define the set

yeeey

<.f13"'afs> = {Zfzgu giEC[Il,---,In]}

=1

It can be easily shown that the ¢4, . . ., f5) is an ideal, known as the idegénerated
by thefi.

The result we present next is the Nullstellensatz due toatilbrhe theorem es-
tablishes a correspondence between the set of solutionslyrfigmials equations (a
geometric object known as affine variety, and a polynomial ideal (an algebraic con-
cept). We state below a version appropriate for our purposes

Theorem 4.3 (Hilbert's Nullstellensatz).
Let (f;);=1,....s, be a finite family of polynomials i€[x1,...,z,]. LetI be the

ideal geherated byf;);j=1,....s- Then, the following statements are equivalent:

1. The set
{z eC| fi(x)=0, i=1,...,s} (4.1)
is empty.
2. The polynomial belongs to the ideal, i.el, € I.
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Semidefinite programming relaxations for semialgebraabf@ms 11

3. The ideal is equal to the whole polynomial ring= Clz1, . . . , zy,].
4. There exist polynomialg € C|x1, ..., z,] such that:
hi@)gi(x) + -+ + fo(x)gs(x) = 1. (4.2)

The “easy” sufficiency directiond(=- 1) should be clear: if the identity (4.2) is sat-
isfied for some polynomialg;, and assuming there exists a feasible paint after
evaluating (4.2) at, we immediately reach the contradiction 0=1. The hard pathef
theorem, of course, is proving the existence of the polyrdsyj.

The Nullstellensatz can be directly applied to prove theaxistence oftomplex
solutions for a given system of polynomial equations. Thiypamialsg; provide a
certificate(sometimes called a Nullstellensatz refutation) that #telescribed by (4.1)
is empty. Given they;, the identity (4.2) can be efficiently verified. There areestdt
two possible approaches to effectively find polynomials
Linear algebra. The first one depends on having explicit bewm the degree of the

productsf;g;. A number of such bounds are available in the literature;fse@-

stance [Bro87,Kol88,BS91]. For example, if the polynomja(x) have maximum
degreed, andz € C", then the bound

dedf;g; < max(3,d)"

holds. The bound is tight, in the sense that there exist Bpesiamples of systems
for which the expression above is an equality. Therefoneergia upper bound on
the degree, and a parameterization of the unknown polyrsmiaa solution can
be obtained by solving a system of linear equations. It ie plsssible to attempt
to search directly for low-degree solutions, since the kmdaunds can also be
extremely conservative.

Grobner basis. An alternative procedure uses Grobnés beethods [CLO97, Mis93].
By Hilbert’s Basis theorem, every polynomial ideal is fibjtgenerated. Grobner
bases provide a computationally convenient represent&bioa set of generating
polynomials of an ideal. As a byproduct of the computatiom @&robner basis of
the ideall, explicit expressions for the polynomiajscan be obtained.

Example 4.4As an example of a Nullstellensatz refutation, we provetatollowing
system of polynomial inequalities does not have solutiores @.

fil@) =2 +y*—1=0
fo(z) =x4+y=0
f3(x) =22 +y* +1=0.
To show this, consider the polynomials
gi(z) == (1 — 16z — 12y — 8zy — 6y°)
92(z) == 2(=Ty — x + 4y® — 16 + 122y + 2y° + 6y°2)
g3(x) := (8 +4y).
After simple algebraic manipulations, we verify that
Ji91 + fag2 + f3g93 =1,
proving the nonexistence of solutions o¥&r
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4.2. The real case: Positivstellensatz

The conditions in the Nullstellensatz are necessary arfatiguit only in the case when
the field is algebraically closed (as in the caséCpf When this requirement does not
hold, only the sufficiency argument is still valid. A simplgaenple is the following:
over the reals, the equation

2241=0

does not have a solution (i.e., the associated real vagetynpty). However, the corre-
sponding polynomial ideal does not include the element

When we are primarily interested in real solutions, the latklgebraic closure of
R forces a different approach, and the theory should be madifeeordingly. This led
to the development of the Artin-Schreier theoryfofmally real fields; see [BCR98,
Raj93] and the references therein.

The starting point is one of the intrinsic propertiesfof

i=1

A field is formally realif it satisfies the above condition. The theory of formallalre
fields has very strong connections with the sums of squasatsith have seen at the
beginning of Section 3.2. For example, an alternative (quhalent) statement of (4.3)
is that a field is formally real if and only if the element is not a sum of squares.

In many senses, real algebraic geometry still lacks thenfialfurity of its counter-
part, the algebraically closed case (suclCasFortunately, many important results are
available: crucial to our developments will be the Real Btgllensatz, also known as
Positivstellensatz [Ste74,BCR98].

Before proceeding further, we need to introduce a few cotscepiven a set of
polynomialsp; € Rz, ...,z,], let M(p;) be themultiplicative monoicdyenerated by
thep;, i.e., the set of finite products of the elemeptgincluding the empty product,
the identity). The following definition introduces the ritigeoretic concept afone

Definition 4.5. A cone P of R[z1,...,x,] is a subset oR[z4, ..., z,] satisfying the
following properties:

l.a,be P=a+beP
2.a,beP=a-bepP
3.a €R[wy,...,x,] = a?€P

Given a setS C R[zy,...,x,], let P(S) be the smallest cone &z, ..., z,]
that containsS. It is easy to see thd®(()) corresponds to the polynomials that can be
expressed as a sum of squares, and is the smallest c@e,in . ., z,,]. For a finite set
S={a1,...,am} CRzy,...,2,], its associated cone can be expressed as:

P(S):{p+qubz|p7qlaaqTEP(@)7 bla"'abTe]\/‘[(ai)}'
i=1
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The Positivstellensatz, due to Stengle [Ste74], is a cktitemrem inreal algebraic
geometry. It is a common generalization of linear prograngrduality (for linear in-
equalities) and Hilbert's Nullstellensatz (for an algebadly closed field). It states that,
for a system of polynomial equations and inequalities,egithere exists a solution in
R™, or there exists a certain polynomial identity which beaisiessto the fact that no
solution exists. For concreteness it is stated her&fanstead of the general case of
real closed fields.

Theorem 4.6 ([BCR98, Theorem 4.4.2])Let (f;)j=1,....s: (gk)k=1,....ts (he)e=1,...u
be finite families of polynomials R[z1, . . ., z,,]. Denote byP the cone generated by
(f)j=1,....s» M the multiplicative monoid generated 0y )x=1,...,, and I the ideal
generated byh,),~1... .. Then, the following properties are equivalent:

1. The set
fi(x) >0, j=1,...,s
x€R" |gr(z) £0, k=1,...,t (4.4)
he(z) =0, j=1,...,u
is empty.

2. There exisff € P,g € M, h € I suchthatf + ¢g> + h = 0.

Proof. We show only the sufficiency part, i.e.=2 1. We refer the reader to [BCR98]
for the other direction.

Assume that the set is not empty, and consider any elemenom it. In this case,
it follows from the definitions that:

f(zo0) >0, g*(x0) > 0, h(zg) =0

This implies thatf (zo) + g*(z0) + h(zo) > 0, in contradiction with the assumption
thatf + ¢g* +h = 0. 0

The Positivstellensatz guarantees the existengefedsibility certificatesor refu-
tations given by the polynomialg, ¢ andh. For complexity reasons these certificates
cannot be polynomial time checkable for every possibleaimst, unless NP=co-NP.
While effective bounds on the degrees do exist, their exgiwas are at least triply ex-
ponential.

Example 4.7To illustrate the differences between the real and the cemghse, and
the use of the Positivstellensatz, consider the very sirgse of the standard quadratic
equation

22 +ar+b=0.

By the fundamental theorem of algebra (or in this case, justexplicit formula for
the solutions), the equation always has solution€ofror the case when € R, the
solution set will be empty if and only if the discriminabt satisfies

2
a
D:=b——>0.
4>
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In this case, taking

=1
h:=—3(2? +az+b),
the identityf + g2 + h = 0 is satisfied.

[+ 9P
g:

5. Finding refutations using SDP

Theorem 4.6 provides the basis for a hierarchy of sufficiemiditions to verify that a
given semialgebraic set is empty. Notice that it is posdiblaffinely parameterize a
family of candidatef andh, since from Section 3.2, the sum of squares condition can
be expressed as an SDP. Restricting the degree of the possilitipliers, we obtain
semidefinite programs, that can be efficiently solved.

Our main result provides therefore a constructive appréasiolutions of the Posi-
tivstellensatz equations:

Theorem 5.1 ([Par00b]).Consider a system of polynomial equalities and inequalitie
of the form (4.4). Then, the search for bounded degree Pstitlensatz refutations
can be done using semidefinite programming. If the degreadisuchosen to be large
enough, then the SDPs will be feasible, and the certificétésimed from its solution.

It is convenient to contrast this result with the NullstaBatz analogue, where the
search for bounded-degree certificates could be done usshgijear algebra.

Proof. Given a degred, choosgy in the following way: ift = 0, i.e., the set of inequa-
tions is empty, they = 1. Otherwise, lety = Hle g™, choosingm such that the
degree ofy is greater than or equal t For the cone of inequalities, choose a degree
dy > d, dy > dedg). Write

f=po+pifi+-+psfs+p12fifo+--+pra.sfi-.. fs

and give a parameterization of the polynomia}of degree less than or equal de.
Similarly, for the polynomiakh in the ideal of equations, write

h=qhi+- -+ qhu,

parameterizing the polynomiads of degree less than or equalde.
Consider now the SDP feasibility problem:

p; are sums of squares

with the equality constraints implied by the equatipn- g2 + h = 0, the decision
variables being the coefficients of thg g;.

If the set defined by (4.4) is empty, then by the Positivatelidz, polynomial cer-
tificates f,, g«, h, do exist. By construction of the SDP problem above, therstex
finite numberdy, such that for every > dy the semidefinite program is feasible, since
there exists at least one feasible point, namgly., h.. Therefore, a set of infeasibil-
ity certificates of the polynomial system can directly beadtéed from a feasible point
of the SDP. a0
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Remark 5.2The procedure as just described contains some consideradrigarametriza-
tion of the polynomials, due to the generality of the statena@d the need to deal with
special cases. In general, once the problem structure ikrifor instance, no in-
equations), much more compact formulations can be giveim ti® case of quadratic
programming presented in Section 7.4.

The presented formulation deals only with the case of p@tirat semialgebraic
sets are empty. Nevertheless, it can be easily applied te gemeral problems, such
as checking nonnegativity of a polynomial over a semialgetset. We describe two
simple cases, more being presented in Section 7.

Example 5.3Consider the problem of verifying if the implication
a(z)=0=0b(z) >0 (5.1)
holds. The implication is true if and only if the set
{z| —b(z) 20, b(x) #0, a(x) = 0}

is empty. By the Positivstellensatz, this holds iff theresegolynomialssy, so, ¢ and an
integerk such that:

51—52b—|—b2k+ta:(),

ands; andss are sums of squares. A special case, easy to verify, is autdin taking
si(z) =0,k =1, andt(z) = b(z)r(x), in which case the expression above reduces to
the condition:

b(x) + r(x)a(x) is a sum of squares (5.2)

which clearly implies that (5.1) holds. Since this expresss affine inr(z), the search
for such anr(z) can be posed as a semidefinite program.

Example 5.4Let f(x) be a polynomial function, to be minimized over a semialgibra
setS. Then,~ is a lower bound oinf,cs f(z) if and only if the semialgebraic set
{z € S, f(z) < v} is empty. For fixedy, we can search for certificates using SDP. It
is also possible, at the expense of fixing some of the vasaltesearch for the best
possibley for the given degree.

In the case of basicompactsemialgebraic sets, i.e., compact sets of the form
K ={xeR" fi(z) >0,..., fs(x) > 0}, a stronger version of the Positivstellensatz,
due to Schmudgen [Sch91] can be applied. It says that a pulial f (z) that is strictly
positive onk’, actually belongs to the cone generated by thélhe Positivstellensatz
presented in Theorem 4.6 only guarantees in this case teepge ofy, h in the cone
such thatfg = 1+ h. An important computational drawback of the Schmiidgemior
lation is that, due to the cancellations that must occurdgrees of the infeasibility
certificates can be significantly larger than in the stanéasitivstellensatz [Ste96].
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5.1. Interpretation and related work

The main idea of Positivstellensatz refutations can bdyeasmmarized. If the con-
straintsh;(z¢) = 0 are satisfied, we can then generate by multiplication andiadd
a whole class of expressions, namely those in the correspgidkal, that should also
vanish atxy. For the inequation case;(# 0), multiplication of the constraintg; pro-
vides new functions that are guaranteed not to have a zerg. &or the constraints
fi = 0, newvalid inequalities nonnegative at, are derived by multiplication with
other constraints and nonnegative functions (actuallyssaf squares). By simultane-
ously searching over all these possibilities, and combitihe results, we can obtain
a proof of the infeasibility of the original system. Thesemgions are simultaneously
carried over by the optimization procedure.

Itis interesting to compare this approach with the standaality bounds in convex
programming. In that caséinear combinations of constraints (basically, linear func-
tionals) are used to derive important information aboutféfasible set. The Positivstel-
lensatz formulation instead achieves improved resultsdmglining the constraints in
an arbitrarynonlinearfashion, by allowing multiplication of constraints and grats
with nonnegative functions.

There are many interesting links with foundational quesim logic and theoretical
computer science. The Positivstellensatz constitutesrplaie algebraic proof system
(see [GV02] and the references therein), so issues aboot lergth are very relevant.
For many practical problems, very concise (low degree)sifaility certificates can be
constructed, even though in principle there seems to beaswreto expect so. This is
an issue that clearly deserves much more research.

Related ideas have been explored earlier in “lift-andgetijtechniques used to de-
rive valid inequalities in zero-one combinatorial optimiion problems, such as those
introduced by Lovasz-Schrijver [LS91,Lov94] and She#atiams [SA9Q]. In partic-
ular, the latter authors develop the so-called Reformutatiinearization technique
(RLT), later extended by Tuncbilek to handle general poiyia problems [SA99,
Chapter 9]. In this procedure, products of explicit uppea lwer bounds on the vari-
ables are formed, which are later linearized by the intréidncon new variables, re-
sulting in a relaxation that can be formulated as a lineagram. Both approaches can
be used to develop tractable approximations to the convixhrero-one points in a
given convex set. A typical application is the case of intéigear or polynomial pro-
grams, which are known NP-hard problems. An important prigyps these approaches
is the exactness of the procedure afteaariori fixed number of liftings.

Some common elements among these procedures are the use wdinnables and
constraints, defined as products of the original ones, asacésed linear (in RLT) or
semidefinite constraints (in the Lovasz-Schrijyér relaxation). In the author’s opin-
ion, an important asset of the approach introduced in theentipaper as opposed to
earlier work is that it focuses on the algebraic-geometrigcsure of the solution set
itself, rather than on that of the describing equations. ifldally, and similar to the
results mentioned above, it can be shown using simple adgeproperties thaa pri-
ori bounded finite termination always holds for the case of zBnoensional ideals
[Par02a].
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The recent independent work of Lasserre [Las01] has seceramon elements
with the one presented here, while focusing more closelyaynomial optimization
and the dual viewpoint of truncated moment sequences. Wsldgional compactness
assumptions, and invoking results on linear represemtsidd strictly positive polyno-
mials over semialgebraic sets, a sequence of SDPs for appatrg global minima is
proposed. In the framework of the present paper, it can benshbat Lasserre’s ap-
proach corresponds to a very specific kind of affine Poséllestsatz certificates. This
restriction, while somewhat attractive from a theoretigalvpoint, in some cases can
produce significantly weaker computational bounds thangutfie full power of the
Positivstellensatz [Ste96], an issue explored in moreildeltewhere [Par02b]. An ad-
vantage of the techniques presented here is that exactrgeme isalwaysachieved in
a finite number of steps (regardless of compactness, or &iey assumption), while the
results in [Las01] can only produce a monotone sequencewfds converging to the
optimal. It should be mentioned that Laurent [Lau] has rédgeanalyzed in detail the
relationship of the Lasserre approach in the 0-1 case witledrlier relaxation schemes
mentioned above.

The bottom line is thaall the procedures mentioned above can be understood as
particular cases of Positivstellensatz refutations, wledther restrictions in the verifi-
cation (linear programming in RLT) or structural consttainn the certificates them-
selves (linearity, in Lasserre’s approach) are impaspdori. In a very concrete sense,
reinforced by the connections with proof systems alludeditove, the Positivstellen-
satz represents the most general deductive system for wifefences from the given
equations can be made, and for which proofs can be efficisatlych over and found.

6. Computational considerations
6.1. Implementation

In this section, we briefly discuss some aspects of the caatipual implementation of
the sum of squares decision procedure. As we have seen i®8cfor semidefinite
programs, just like in the linear programming case, theeetao formulations: primal
and dual. In principle, it is possible to pose the sum of sgsiqroblem as either of
them, with the end results being mathematically equivaldioivever, for reasons to
be described next, one formulation may be numerically mdfeient than the other,
depending on the dimension of the problem.

As mentioned in Section 3, a semidefinite program can beprdtzd as an opti-
mization problem over the intersection of an affine subspae@d the cones’. De-
pending on the dimension &, it may be computationally advantageous to describe
the subspace using either a set of generators (an explidihagerepresentation) or
the defining linear equations (the implicit, kernelrepresentation).

When the dimension of is small relative to the ambient space, then an efficient
representation will be given by a set of generators (or ashase.,

X =Go+ Y NG
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2d \ n |1 3 5 7 9 11 13 15
2 2 4 6 8 10 12 14 16
4 3 10 21 36 55 78 105 136
6 4 20 56 120 220 364 560 816
8 5 35 126 330 715 1365 2380 3876
10 6 56 252 792 2002 4368 8568 15504
12 7 84 462 1716 5005 12376 27132 54264

Table 6.1.Dimension of the matrixQ as a function of the number of variablesand the degre@d. The
corresponding expression @é‘;d) .

On the other hand, it is nearly full dimensional, then a more concise descripison
given instead by the set of linear relations satisfied by thements ofZ, that is,

<X1 Al> = bi-

While the resulting problems are formally the same, theeauaually significant differ-
ences in the associated computation times.

Consider the problem of checking if a dense polynomial céltoegree2d in n
variables is a sum of squares, using the techniques dedosilréier. The number of
coefficients is, as we have seen, equaﬁ@dgd). The dimension of the corresponding
matrixQ is ("} %) (see Table 6.1).

If we use an explicit representation the total number of tilaial variables we need
to introduce can be easily be shown to be:

n+2d
(")

n+d\> n n+d
d d
On the other hand, in the implicit formulation the number qfiality constraints (i.e.,
the number of matriced; in (3.1)) is exactly equal to the number of coefficients, i.e.

n+ 2d
Ny = .

Example 6.1We revisit Example 3.5, where an implicit (or kernel) regmetation of the
one dimensional subspace of matriégsvas given. An explicit (image) representation
of the same subspace is given by:

1

N1:§

2 - 1
Q=1|-1x5 0
1 0 2 —1

The particular matrix in Example 3.5 corresponds to the ohdi = 3. Notice that
the free variable\ corresponds to the algebraic dependency among the enfries o

(@2)(y*) = (zy)*.

For fixedd, both quantitiesV;, N, areO(n??); however, the corresponding constants
can be vastly different. In fact, the following expressitidd:

1 1
vix (s o)™ 2~ () ™

www.manaraa.com



Semidefinite programming relaxations for semialgebraabf@ms 19

For large values ofl, the second expression is much smaller than the first oneingnak
the implicit formulation preferable. For small valuesrondd, however, the situation
is not clear-cut, and the explicit one can be a better choice.

We consider next three representative examples:

1. The case of a quartic univariate polynomial € 1,2d = 4). Notice that this
is equivalent, by dehomogenization, to the quartic biwarfarm in Examples 3.5
and 6.1. The resulting matri¢ has dimension8 x 3, and the number of variables
for the explicit and implicit formulation aré&V; = 1 and N, = 5, respectively.

2. A trivariate polynomial of degree 1@:(= 3,2d = 10). The corresponding matrix
has dimensions6 x 56, and the number of variables; = 1310 and N, = 286.
The advantages of the second approach are clear.

3. A quartic polynomial in 15 variablesi(= 15, 2d = 4). The corresponding matrix
has dimension$36 x 136, and the number of variables i$; = 5440 and Ny =
3876.

A minor inconvenience of the implicit formulation appearsemn the optimization prob-
lem includes additional variables, for which no a priori bds are known. Most current
SDP implementations do not easily allow for an efficient rdixeimal-dual formula-
tion, where some variables are constrained to be in the P8P aond others are free.
This is a well-known issue already solved in the linear pamgming setting, where
current software allows for the efficient simultaneous Hexgcbf both nonnegative and
unconstrained variables.

6.2. Exploiting structure

If the polynomials are sparse, in the sense that only a felweifrtonomials are nonzero,
thenitis usually possible to considerably simplify theuléiag SDPs. To do this, we can
use a result by Reznick, first formulated in [Rez78], thatrabterizes the monomials
that can appear in a sum of squares representation, in tdriine blewton polytope of
the input polynomial.

Another property that can be fully exploited for algorithofficiency is the pres-
ence of symmetries. If the problem data is invariant underabtion of a symmetry
group, then the computational burden of solving the optati@n problem can be sub-
stantially reduced. This aspect has strong connectiofsrefiresentation and invariant
theories, and is analyzed in much more detail in [GPO1].

In practice, the actual performance will be affected by o#iements in addition to
the number of variables in the chosen formulation. In paléic the extent to which the
specific problem-dependent structure can be exploitediallysthe determining factor
in the application of optimization methods to medium or &ggale problems.

7. Applications

In this section we outline some specific application areasttich the developed tech-
nigues have shown a great potential, when compared toitradittools. The descrip-
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tions are necessarily brief, with more detailed treatmapisearing elsewhere. Compu-
tational implementations for most of these examples areigeal with the freely avail-
able SeDuMi-based SOSTOOLS software package [PPPO2fulthaimplements the
approach developed in this paper. Needless to say, theajigyerf the semialgebraic
problem formulation makes possible the use of the presemigttiods in numerous
other areas.

7.1. Global bounds for polynomial functions

It is possible to apply the technique to compute global lob@unds for polynomial
functions [Sho87,Sho98,Las01]. For an in-depth analykihis particular problem,
including numerous examples and a comparison with tratitialgebraic techniques,
we refer the reader to [PS01].

The condition

F(x) —~ isasum of squares

is affine in~y, and therefore it is possible to efficiently compute the mraxi value ofy
for which this property holds. For every feasibleF'(x) > ~ for all 2, so~ is a lower
bound on the global minimum. In many cases, as in the Exanmgtawbthe resulting
bound is optimal, i.e., equal to the global minimum, and apoj achieving the global
minimum can be recovered from a factorization of the dualtsoh.

Example 7.1Consider the function

F(x,y) = 42 — Ex‘l + le + zy — 4% + 4y,
10 3
cited in [Mun99, p. 333] as a test example for global minirtimaalgorithms, since it
has several local extrema. Using the techniques descrimdidreit is possible to find
the largesty such thatf’(z) — v is a sum of squares.
Doing so, we findy, ~ —1.03162845. This turns out to be the exact global mini-
mum, since that value is achieved fors 0.089842, y ~ —0.7126564.

However, for the reasons mentioned earlier in Section 8ig dossible to obtain a
lower bound that is strictly less than the global minimumewen no useful bound at
all.

Example 7.2As examples of a problem with nonzero gaps, we compute glotagr

bounds of dehomogenizations of the Motzkin polynomigle, y, z) presented in (3.4).

Since M (z,y, z) is nonnegative, its dehomogenizations also have the saopery.

Furthermore, sinc@/(1, 1,1) = 0, they always achieve its minimum possible value.
Fixing the variabley, we obtain

F(x,2) := M(z,1,2) = 2% + 2% + 25 — 32222

To obtain a lower bound, we search for the maximuifior which F(z, z) — v is a sum
of squares.
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Solving the corresponding SDPs, the best lower bound tmebeabtained this way

can be shown to be% ~ —0.177978, and follows from the decomposition:

F(x,z)+ % = (—%z +23)2 + (g—z + 2% — %,22)2 + %xg

The gap can also be infinite, for some particular problemsis@er the dehomog-
enization inz:

G(l’,y) = M((E, Y, 1) — CC4y2 + $2y4 + 1-— 3$2y2.

While G(x,y) > 0, it can be shown thaf(x,y) — + is not a sum of squares fany
value ofy, and therefore no useful information can be obtained indage. This can be
fixed (using the Positivstellensatz, or the approach in Eptam.3 below) at the expense
of more computation.

As we have seen, the method can sometimes produce suboptiorads. This is to
be expected, for computational complexity reasons andusedhe class of nonnegative
polynomials is not equal to the SOS ones. It is not clear yet lmoportant this is
in practical applications: for example, for the class ofdam instances analyzed in
[PS01],no examplevas produced on which the obtained bound does not coincithe wi
the optimal value. In other words, even though bad examplésdbed exist, they seem
to be “rare,” at least for some particular ensembles.

In any case, there exist possible workarounds, at a highmpuatational cost. For a
nonnegativeF'(x), Artin’s positive answer to Hilbert's 17th problem assutles exis-
tence of a polynomialz(x), such thatF’(z)G?(x) can be written as a sum of squares.
In particular, Reznick’s results [Rez95] show thafifis positive definitat is always
possible to tak&: (z) = (> 2?)", for sufficiently larger.

Example 7.3Consider the case of the Motzkin form given in equation (3/)men-
tioned earlier, it cannot be written as a sum of squares ofrfohials. Even though it
is only semidefinite (so in principle we cannot apply Rezisitkeorem), after solving
the SDPs we obtain the decomposition:

(22 + > + 2%) M(z,y,2) = (22yz — y2*)? + (22 — 22%)2 + (2%y® — 2*)* +

1 3
+Z($y3 —2°y)* + Z(ﬂfy3 + 2%y — 2zy2?)?,
from where nonnegativity is obvious. Since the polynomialExample 7.2 are deho-

mogenizations oM (z, y, z), it follows that this method yields exact solutions for thos
examples.

To give a rough idea of the large scale problems to which we lgyplied the tech-
nigues in [PS01], we mention that the SOS lower bound for aeeuartic polynomial
in thirteen variables (i.e., with 2380 monomials) can besadlon a standard desktop
machine, using off-the-shelf software, in approximateélyndinutes.
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Fig. 7.1.The curveC(z, y) = 0 and the minimum distance circle.

7.2. Geometric problems

Many problems in computational geometry can be fully désatiusing a semialgebraic
formulation. Properties such as intersection of geometbiects easily reduce to the
real feasibility of sets of polynomial equations. In theldaling very simple example,
we use the Positivstellensatz to compute a lower bound odisteence between a point
and an algebraic curve.

Example 7.4In this problem, we compute a lower bound on the distance datva
given point(xo, yo) and an algebraic curv@(z,y) = 0. Take(zo,yo) = (1,1), and
let the algebraic curve be

C(z,y) :=2® — 8z — 2y = 0.
In this case, we can formulate the optimization problem

min (z —x0)? + (y — 2 7.1
C(m,y):O( 0) (¥ — %) (7.1)

A lower bound on the optimal value can be obtained as destabdier. Restricting the
degree of the auxiliary polynomials to a simple linear esgren inz, we can compute
the maximum value of? that satisfies

(x =1+ (y —1)? =92 + (a+ fz)(2® — 8z — 2y) is asum of squares (7.2)

It should be clear that if condition (7.2) holds, then eveajr pf points(z,y) in the
curve are at a distance at least equaj foom (zo, yo). To see this, note that if the point

(z,y) is in the curveC'(z,y) = 0, then the last term in (7.2) vanishes, and therefore

(x —1)? + (y — 1)? > 4. The expression is affine im, 3, andy?, and so the problem
can be directly solved using SDP.
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The optimal solution of the SDPs is:
o~ —0.28466411, (=~ 0.07305057, -~ ~ 1.47221165.
The obtained bound is sharp, since it is achieved by the values
r ~ —0.176299246, y ~ 0.702457168.

In Figure 7.1 a plot of?(x) and the optimal solution is presented.

Notice that the original optimization formulation (7.1)ista convex program, and
has other local extrema. Nevertheless, the procedure ale@yputes a bound, and in
this case we actually recover the global minimum.

7.3. The discriminant of symmetric matrices

The following example illustrates the sum of squares teghes, and deals with the
discriminant of symmetric matrices. It has been previoasiglyzed in [Ily92,Lax98].
Given a symmetric matrid € S™, define its characteristic polynomia()\) as:

p(A) := det(AI — A).

This is a polynomial in\, of degreen. Its discriminantD (see for instance [Mis93]) is
a homogeneous polynomial of degreg: — 1) in the (”;1) coefficients ofA. Since

A 'is symmetric, its eigenvalues (the rootspdfare real, and therefore the discriminant
D takes only nonnegative values, i.&,> 0. The results in [lly92, Lax98] show that
additionally the polynomiap is always a sum of squares. For instance, whea 2,
we have:

A= [Zlc)]v PN =N+ (ma—c) A +ac—b*, D =4b>+a® + ¢ - 2ac,

and the SOS property holds sinfecan be alternatively expressed as
D = (a —c)* + (2b)%

An explicit expression for the discriminant as a sum of sqaas presented in [Ily92].
An interesting unsolved problem is finding a representatiiih the minimum possible
number of squares. For the case- 3, i.e.,

abd
M= |bcel,
de f

after solving the SDPs, using as objective function theetEdhe matrix as a heuris-
tic for the rank, we obtain the following decomposition usseversquares:

D= fi+f5+ 3+ [F+15(f5+ f6 + 7)
fi=e*f+b%c+d*a—cf? —ac® — fa® —ce® —ab® — fd®> + A f +d*c+ f2a
fa = 2d® — de? — b?d — 2dc? + 2def — bef + 2bce — 2adf — abe + 2acd
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fs = 2€® — eb? — d?e — 2ea® + 2eac — dbc + 2dab — 2fec — fdb + 2fae
fa =20 —bd® — €2b — 2bf% + 2bfa — eda + 2efd — 2cba — ced + 2¢cfb
fs = be? — dce — bd® + ade
fe = db® — eab — de® + feb
fr =ed> —bfd— eb® + cbd.

For the case = 3, the expressions in [Ily92] produce a decomposition withdistinct
square terms.

7.4. Quadratic programming

In this section we specialize the results presented e#oltbe common case of quadratic
inequalities. Concretely, given symmetric matricesl,, ..., A,, € 8", define the set
A as:

A={zeR" x"4x>0, |x|=1} (7.3)

A well-known sufficient condition for the sed to be empty is given by the existence
of scalars\; that satisfy the condition:

SNA -1, N=>0. (7.4)
=1

The reasoning is very simple: assurdas not empty, and multiply (7.4) left and right
by anyx € A. In this case, the left-hand side of (7.4) is nonnegativesesall terms are
nonnegative, but the right-hand side-ig. This is a contradiction, sdl is empty.

The condition (7.4) is the basis of many results in semidefintlaxations for
guadratic programming problems, such as the one underlya@oemans-Williamson
MAX-CUT algorithm [GW95], and many others. For instance; MAX-CUT both
the objective and the boolean constraints on the decisioablas can be modeled by
guadratic expressions, nameyyzij wi; (1 — z;x;) andz? — 1 = 0, respectively. Ap-
plying the condition (7.4) above to the homogenized systeenpbtain a semidefinite
program exactly equivalent to the standard SDP MAX-CUTxaten. It is well-known
(and obvious from a complexity standpoint) that this canditan be conservative, in
the sense that only bounds on the optimal value are obtainie iworst case.

In the framework of this paper, a good interpretation of dbad (7.4) is as a Pos-
itivstellensatz refutation, with the multipliers restad to be a constant. By removing
the degree restrictions, more powerful tests can be devigdtie following theorem
[Par00b], the case of quadratic multipliers is stated. Téweegalizations to higher de-
grees are straightforward, following directly from Theoré.1.

Theorem 7.5.Assume there exist solutiogs € 8™, r;; € R to:

m

Y Qi@Ai) + Y ryAi@)Aj(x) <0, Vo eR"/{0}. (7.5)

i=1 1<i<j<m

whereQ;(z) := 27 Q;z,Q; = 0 andr;; > 0. Then, the se#l is empty.
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Proof. It basically follows from the same arguments as in the Ras#ilensatz case:
the existence of a nontrivial implies a contradiction. O

Note that the left-hand size of (7.5) is a homogeneous forgegfee four. Checking
the full condition as written would be again a hard problemwse check instead a
sufficient condition: that the left-hand side of (7.5) canviréten (except for the sign
change) as a sum of squares. As we have seen in Section 8.2athbe checked using
semidefinite programming methods.

The new relaxation is always at least as powerful as the atdmzhe: this can be
easily verified, just by taking); = A\;I andr;; = 0. Then, if (7.4) is feasible, then
the left hand side of (7.5) is obviously a sum of squares (réicat positive definite
guadratic forms are always sums of squares).

In [Par00b], we have applied the new procedure suggestechbprém 7.5 to a
few instances of the MAX-CUT problem where the standardxagian is known to
have gaps, such as thecycle and the Petersen graph. For these instances, the new
relaxations are exact, i.e., they produce the optimal smiut

7.5. Matrix copositivity

A symmetric matrixV/ € R™*" is said to beopositivaf the associated quadratic form
takes only nonnegative values on the nonnegative orthantific; > 0 = 27 Mx > 0.
As opposed to positive definiteness, which can be efficievdlyfied, checking if a
given matrix is not copositive is an NP-complete problem [87K

There exist in the literature explicit necessary and s@ffitconditions for a given
matrix to be copositive. These conditions are usually esged in terms of principal
minors (see [Val86,CPS92] and the references thereinkeer, the complexity re-
sults mentioned above imply that in the worst case thesg tast take an exponential
number of operations (unless P = NP). Thus, the need foreftisiufficient conditions
to guarantee copositivity.

Example 7.6We briefly describe an application of copositive matriceB I 98]. Con-
sider the problem of obtaining a lower bound on the optimhltian of a linearly con-
strained quadratic optimization problem:

= min 2T Qzx
f Azx>0, 2Tx=1 Q

If there exists a solution’ to the SDP:
Q—ATCA = ~I

whereC is a copositive matrix, then it immediately follows thgt > ~. Thus, having
semidefinite programming tests for copositivity allows farhanced bounds for this
type of problems.

The main difficulty in obtaining conditions for copositiyits dealing with the con-
straints in the variables, since eachhas to be nonnegative. While we could apply the
general Positivstellensatz construction to this problemppt here for a more natural,
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though equivalent, approach. To check copositivityHfwe can considet; = z? and
study the global nhonnegativity of the fourth order form givzy:

P(z) :=2" Mz = Z mijzfz?
]
wherez = [22,22,...,22]T. Itis easy to verify that)/ is copositive if and only if
the form P(z) is positive semidefinite. Therefore, sufficient conditidos P(z) to be
nonnegative will translate into sufficient conditions far being copositive.
If we use the sum of squares sufficient condition, then thisstout to be equivalent

to the original matrix\/ being decomposed as the sum of a positive semidefinite and

an elementwise nonnegative matrix, i.e.

This is a well-known sufficient condition for copositivitgde for example [Dia62]).
The equivalence between these two tests has also beenchioti€&l 77, Lemma 3.5].
The advantage of the approach is that stronger conditiombealerived. By con-
sidering higher order forms, a hierarchy of increasinglypdul tests is obtained. Of
course, the computational requirements increase acagydin
Take for example the family df(r + 2)-forms given by

P.(z) = (Z z3> P(z).

i=1

Then it is easy to see that#; is a sum of squares, the?),; is also a sum of squares.
The converse proposition does not necessarily holdFA.e, can be a sum of squares,
while P; is not. Additionally, if P.(z) is nonnegative, then so i3(z). So, by testing if
P.(z) is a sum of squares (which can be done using SDP methods, aibed3, we
can guarantee the nonnegativity®fz), and as a consequence, copositivity\éf

For concreteness, we will analyze in some detail the easd, i.e., the sixth order
form

Pi(z) := Zm”zfzfzi
i,k

The associated SDP test can be presented in the followingeime

Theorem 7.7.Consider the SDPs:

M — A' =0, i=1,...,n (7.7)
A; =0, i1=1,...,n
A+ A+ A =0, i
A+ AL+ Al >0, i jEk
where then matricesA’ € S™ are symmetric,Q;'.k = A};J_). If there exists a feasible

solution, thenP (z) is nonnegative, and thereford is copositive. Furthermore, this
test is at least as powerful as condition (7.6).
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This hierarchy of enhanced conditions for matrix copogijtogether with results
by Powers and Reznick [PRO1], has been recently employechb{i&k and Pasechnik
[dKPO02] in the formulation of strengthened bounds for ttebaity number of a graph.
A very interesting result in that paper is an explicit exaenpf a copositive matrix
M € S'2, for which the test corresponding to= 1 is not conclusive.
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